Friday 3 September 2021

Wired for efficiency: How methanogenic microbes manage electrons

Methanogenic archaea use sophisticated enzyme systems to live in energy-limited anoxic environments. A key mechanism for saving energy is electron bifurcation, a reaction that 'splits' the energy of a pair of electrons, making one more strongly reducing at the expense of the other. Researchers from the Max Planck Institutes for Terrestrial Microbiology (Marburg) and Biophysics (Frankfurt am Main) have discovered a massive enzyme complex from a methanogenic archaeon that directly transfers electrons from the electron bifurcation reaction to CO2 reduction and fixation. Their detailed insights into these efficient energy-transforming processes may open new possibilities for sustainable biotechnological development.